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SECt'ION 1

INTIROI)UC'I'ION

This report ij based upon the review of a number of studies related to

gun dynamics; see the Reference section. The works reviewed inclt•Ce reports

and books provided by Mr. Alexander Stowell Elder of Ballistics Research

Laboratory. In addition, the publication Applied Mechanics Reviews was

searched for pertinent papers in the gun dynamics field. This publication,

dating from 1948 (Volume 1) to 1981 (Volume 34), reviews the world literature

in applied mechanics. Surprisingly, little of direct significance to the gun

dynamics field was found, the works contained in Applied Mechanics Reviews

being generally treatments which require extensive extrapolation to he

applicable to the gun dynamics problem. Similarly, works in other journals,

such as the Journal of Applied Mechanics of the American Society of Mechanical

Engineers, the Journal of the American Institute of Aeronautics and

Astronautics, and the Journal of the Engineering Mechanics Division of the

American Society of Civil Engineers, seemingly were void of papers dealing

directly with gun dynamics. Apparently, although the technical literature

covers a broad range of topics and methods in dynamics, it contains little

information that is directly applicable to the gun dynamics - gun pointing

accuracy problem. The book by L. Fryba contains a wealth of information on

the effects of moving loads on elastic and inelastic solids, elements and

parts of structures and on elastic media. Unfortunately, the theory and

applications contained therein are directed to slowly moving loads or masses.

At high speeds, the Fourier seriThs method employed is inadequate since then

a very large number of terms of the series must be retained. Even with the

retention of a large number of terms the method is unsatisfactory except for

the simplest systems and forcing functions. Hence, it is not applicable to

the economical analysis of complex gun dynamics problem.

The successful analysis of a gun dynamics problem depends not only

upon the accuracy of the analytical method employed, but also upon the cost

of obtaining sufficiently accurate and reliable results. With these

objectives in mind, in this report, we emphasize mainly those studies which

appear to offer the greatest possibility of achieving accurate modeling of

a gun system economically. Accordingly. we consider in some detail the

7
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works of P. A. Cox and J. C. ltokanson (Reference 30), T. Feng and T. Hung

(Reference 22, page 179), P. C. Parks and r Puan (Reference 26), F. J.

Perdreauville (References 13, 14), T. E. Sint,. ii, et al. (References 10, 16,

17, 22, 23, 24, 27), M. T. Soifer and R. S. P-cker (Reference 32), and BLM

Applied Mechanics Consultants (References 28, 33).

8

I
- --- = -.- ~ _ _ _-M ~ ------.



SliTI'ION 2

MUZZI, MOT''IONS OF TilE M08 105 mm TrANK GUN
(P. A. Cox and .1. C. lokanson; Reference 30)

In this work, the mathematical model of the tube consists of two-

dimensional beam finite elements. Two degrees of freedom are present at each

node, thus permitting a cubic variation in d isplacement between nodes. The

number of elements used is large enough to appear adequate.

Fffects considered include initial droop, breech block eccentricity,

gas pressure, projectile tube friction force, projectile unbalance, spin,

and weight. Sun heating is not included. In addition, the effect of tube

motion on projectile acceleration is incorporated.

Vertical motions, horizontal motions and torsion are considered

separately. For vertical motions, the agreement between calculated and

experimentally measured values is very poor for displacements, velocities and

accelerations of the muzzle at projectile exit. The experimentally measured

values for velocities, for example, are approximately ten times the

calculated values. Some attempts were made to improve the agreement by

incorporating nonlinear stiffness in the recoil mechanism. These adjustments

were without success.

For horizontal motions, the same program is used, and the agreement

between calculated and measured val6es is somewhat better but still not good.

For torsional motions, the tube is modeled with finite elements having

one degree of freedom at each node, allowing a linear variation in angular

displacement between nodes. Torsional stiffness of the supports is considered

important but must be estimated. Clearances are neglected. The forcing

function is due to the projectile spin acceleration. The comparison between

experimental and calculated values is similar to that of the horizontal

motion case. The calculated angular displacements and velocities are lower

than those measured, but the calculated angular accelerations are higher than

the measured ones. The authors suggest that improper modeling of the support

conditions is primarily responsible for the discrepancies.

In summary, the calculated values of horizontal motion and torsional

motion are closer to the measured values (off by a factor of 2 or 3), than

are the corresponding values of the vertical motions, which are off by a

factor of approximately 100. The calculated values show high frequency

I)I



oscillations which arc not present in the experimentally measured data. "Tb is

difference could be due to numerical ais well as mechanical noise. A stepwise

numerical scheme which incorporates a direct integration method of a fairly

standard form is used. An improved integration technique, involving some

iteration, gives only slightly different results.

In an effort to improve agreement between calculated and measured

values, as well as to determine a sensitivity index for various factors, a

large number of computer runs were made with various values of the parameters.

"Those factors which appear to have an important influence on the

results are the motion dependent forces, breech block eccentricity, projectile

eccentricity and tube boundary conditions. The importance of breech block

eccentricity has been observed by others (Reference 28). Factors which

showed little effect are the projectile weight and the breech torque reaction.

The inclusion of shear deformation in the tube has a mixed effect on results.

In spite of selecting a wide range of parameters, the authors were

unsuccessful in matching experimental and calculated results for motion in

the vertical plane. In general, the calculated values of displacements,

velocities, etc., are considerably lower than the measured values. No reason

for this discrepancy is cited. In the horizontal plane agreement between

experimentally anti numerically calculated displacement is not good, but is

better than in the vertical plane. For the velocities and accelerations in

the horizontal plane the agreement is good. in torsion, the agreement between

experimentally determined and numerically calculated displacements can be

made quite good by adjusting the boundary conditions in the numerical model.

Similar comparison for velocities and accelerations, however, do not show

such good agreement.

It appears that thie finite element model of the gun tube is a good one.

However, the modeling of the initial clearance, the recoil mechanism, the

support system, and the breech appears to be inadequate. In the latter

modeling, there is considerable need for improvement. In addition, the

vectorial theory shows that the assumption that the vertical and horizontal

displacements of the tube are uncoupled (that is, may be determined

independent of one another) is not valid. (See "Dynamics of a Projectile in

a Flexible Tube," Interim Report BIL.-AMC-81-6, Contract No. DAAKII-80-C-0039,

1 August 1981.) This coupling may account for the discrepancies between

10
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calculated and experimlentally determined results, Also, overn l rigid body

motions may account for the larger experimental values.

11
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SECTION 3

TRANSVERSE DYNAMIC RESPONSE OF GUN BARREL WITH TIME-VARYING SUPPORTS
(T. Feng and T. Hung, Reference 22, page 179)

The mathematical basis of the analysis in Reference 22, page 179 is a

generalized linear elastic beam equation (Equation 1 in the report) and

boundary conditions (Equation 2 in the report), derived by T. Simkins, G.

Pflegl, and R. Scanlon (Reference 16).

Equation 1, Reference 22, page 179:

(Ely")" + pA(x)V = -pgA(x)cosci - p(x,t)a2 ry" - I2 y + 2Vy' +

+ Vy' + gcosa]m ( - x) - y'pgA(x)(X0 (t)/g - simD)

+ y"pgA(x)(X 0 (t)/g - sim)d4x + P1 6(n x)
x

+ P2 6(n ... - x)

Equation 2, Reference 22, page 179:

y(O,t) = y'(O,t) a 0

y(n,t) = y(rt + ;,t) = 0

y(x,O) Yo

where E modulus of elasticity

I moment of inertia of the barrel cross-section

p * mass density of the barrel

A(x) = cross-sectional area of the barrel

p(x,t) = bore pressure

a = inner radius

V = velocity of the projectile

13 P
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g ý gravitational acceleration

a = inclined angle of the barrel axis

m = projectile massP
6 = Dirac delta function

projectile travel distance

X(t) = recoil and counter-recoil acceleration

£ = total length of the barrel

PI = reaction of the second support

Ti = recoil and counter-recoil distance

P2  = reaction of the third support

= distance between the last two supports

In the right-hand side of Equation (1) of Reference 22, page 179,

above, the first term is gravitational force; the second term is Bourdon load;

the third term is projectile inertia and gravitational force; the fourth and

fifth terms are recoil ard counter-recoil inertia forces; and the last two

terms are xeacti3iis of the supports. Thus, incorporated in the theory are

elastic bending of a tapered tube, lateral inertia of the rube, weight of the

tube, the Bourdon effect, weight and i.nertia of the projectile, recoil of the

barrel, and lateral constraint from contacting immovable pads. The tube is

free to slide axially on the ptds. There is no clearance between a pad and

the tube. The central axis of the deflected tube is assumed to lie constantly

in a fixed vertical plane. The projectile is treated as a point mass. Shear

deformation and rotary inertia of the tube are disregarded. Axial. friction

between the tube and the y•ojectile is disregarded. Although it is not

essential to the theory, the gas pressure at any instant is assumed to

decrease parabolically from a maximum at the breech to the fraction (1 + r/2)-1

of the breech pressure at the projectile, where r is the ratio of the mass of

the charge to the mass of the projectile.

In the numerical example that is treated, there are three pad supports

idealized as immovable point supports. Initially one pad is at the breech

and the other two are at intermediate points between the breech and the

muzzle (see Figures 1 and 2 in the report). The system consists of an

axially symmetric tube. There is no breech block. The maximum computed

displacement and rotation at the muzzle of a 60 mm tube 181 in. long are

14



roughly 0.02 in. and 0.001 radians. These deflections probably would be

increased greatly if an eccentric breech block were attached to the tube.

Uctails of the analysis and the numerical program are not presented in

the report. The authors state: "A combination finite-difference, modal

analysis, and Picard Iteration scheme is adopted as a basis for the method of

solution. Modal analysis is done in a short time interval, considering the

location of the barrel supports fixed. The iteration scheme is employed i)

cope with forcing functions which are response dependent. By revising the

modes of the barrel and considering the terminal and initial conditions of

the rroblem, dynamic response is obtained in the next short period of time.

Continuing in this way, a successive modal analysis in an iterative manner is

established."

"If one assumes that n is constant (i.e., no recoil motion of the

barrel), the equations can be solved readily by finite-difference, modal

analysis, or any other suitable method. It follows that, for a short period

of time, one may attempt to seek an approximate numerical solution by

considering n constant. The solution over the whole time interval of concern

can be obtained by updating 'he value of q through successive short time

intervals. Furthermore, for a short time interval, the barrel modal functions

can be treated as fixed. Using several modal functions to expand the

solution in the interval would then result in an approximate solution."

"A difficulty arises in the right-hand side of Equation (1), which

involves the unknown transverse loads and must be calculated before the usual

modal method can be applied. To overcome this, one may resort to an

iterative method. First, one assumes the barrel is under the action of

gravitational force, which is a multiple (starting weight factor) of the

first term of the right-hand side of Equation (1). The solution of this load

gives an amount of deflection which is used to calculate "transverse load"

for the next iteration. This is essentially an adaptation of the generalized

Picard method. Use of modal analysis in such a manner with a finite-element

model has two advantages. It avoids calculating the pad reactions, and it

takes account of any attached masses."

A somewhat more general theory than that developed by Feng and Hung is

given in Reference 28. In Reference 28, pads are replaced by linear and A

rotational springs and dashpots. Also, the recoil mechanism is represented

4



by springs and dashpots, and axial friction between the projectile and the

barrel is included. A strong effect of eccentricity of the breech block is

indicated by numerical computations.

Numerical results based upon the work of Reference 22 is questionable

since the projectile is treated as a point mass, axial friction between the

tube and projectile is disregarded, and coupling between vertical and

horizontal tube motions is not included.

16



SECTION 4

EXPLANATORY NOTES FOR THE BARREL VIBRATION PROGRAM FLEX
(P. C. Parks and G. Pagan, Reference 26)

In Reference 26, the gun under consideration is mounted on a tank,

which is a moving non-Galilean reference frame. It would be very helpful to

have a diagram illustrating the notazions. The barrel is flexible, but it is

assumed to deflect only in a fixed vertical plane. Gyroscopic action of the

projectile is not considered. The "shot" which consists of the charge and

the projectile, is conceived to be distributed along the barrel, rather than

being concentrated at the projectile. The total mass of the shot is M, and

the mass of shot per unit length of the barrel is defined to be Mf(x), in

which x is an axial coordinate along the barrel.

The mathematical basis of the analysis is Equation (2.1) of Reference

26.

Equation (2.1), Reference 26:

a2  2 a t 2 2y a 0  ay
- r- tI Cx) a (- B ~ xdx [K 2 2 aBtmx

ax2 ax 2  a x2 ax-2 3

+ T-xý-] + me(x) 2 = 1 F.
at 2  i:l 1

where

a2  a2  2 2
F =M (x 2V (L a, ) + V 2 ay y 0sL saxat + + Vs2 2 + g]

atax ax

"F2 = -(Mf(x) + m(x))[(x - X)O - 2VB0c +Z]

F = MF(x)(VR) 62 sin [(X - Xs)R + e]

The Bourdon effect should introduce a term Itd py, where y is the deflec-

tion, d is the bore diameter, p is the gas pressure, and y a y/9x . No

such term appears in Equation (2.i) of Reference 26. Apparently, the Bourdon

17
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effect is neglected. Also, axial friction of the projectile on the barrel is

disregarded. The absolute deflection f) is represented by Equation (2.2) of

Reference 26, namely

Equation (2.2), Reference 26:

D = ytx,t) + (x - X)6 + zC

where y(x,t) is the deflection measured from the static configuration, X is

the distance from the trunnion to the center of the rear bearing, 0 is thec

angular displacement of the cradle, and Z is the displacement of the trunnion.

The authors state: "It must be noted that y is the displacement measured

from the locus of centers of gravity (i.e., centroids) of each cross section

area of the barrel as it droops naturally under gravity, having any

manufacturing bore asymmetries that we want to consider." However, the

asymmetries are assumed to be due solely to vertical misalignment of the bore.

Sidewise misalignment would rotate the princinal axes of inertia of the cross

sections and cause sidewise bending. It seems that manufacturing inaccuracies

would be very unlikely to produce a barrel whose centroidal axis would lie in

a vertical plane. Consequently, an initially straight barrel with a centered

bore is considered in the following discussion. For simplicity, the total

deflection is denoted by y(x,t), although the authors separate it into a

sum y + Y0, where y0 is the static deflection.

The differential equations of beams can be derived by specialization of

the differential equations of shells. This derivation is carried out for

curved beams in "Foundations of Practical Shell Analysis" (FPSA), Department

of Theoretical and Applied Mechanics, University of Illinois, Revised Ed.

1964, Art. 48. The differential equations of equilibrium (Equation 261,

FPSA) apply for initially curved beams and straight beams, where, for

precision, 1/R is the curvature of the bent centroidal axis. Consequently,

if s is arc length on the bent centroidal axis,

a2M N
+-2 0 (4.1)as2
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in which M is the bending moment, N is the tension in the beam, and q is the

distributed normal load (Figure 4.1).

If the beam is initially straight, classical beam theory yields

EI
M = (4.21

R

Consequently, by Equation (4.1),

a2 El N
s2 R f - R - q = 0 (4.3)

Equation (4.3) applies for a slender straight elastic bean with any symmetri-

cal cross-sectional shape. For a freely vibrating beam, q is an inertial

load.

Since the gun is mounted on a tank, it is necessary to determine q(x,t)

for a non-Galilean reference frame. Let (x,y) be a coordinate system that

moves in a fixed (Galilean) reference frame (C,q) (Figure 4.2). The motion

of frame (x,y) is determined by

E 0 = E0( W ,no = no(t) , e = o(t)

Let the gun tube be referred to the (x,y) system. The instantaneous form of

the axis of the tube is given by x = x(s,t), y = y(s,t), where s is arc

length along the axis of the tube. The projectile is located at the point

s = s(t). Reference is made to "Dynamics of a Projectile in a Flexible Tube"

(DPFT), BLM Applied Mechanics Consultants, Interim Report 81-6, Contract

DAAK-11-80-C-0039, U.S. Army ARADCOM, BRL, Aberdeen Proving Ground, Maryland,

2100S.

By Equation (18) of DPFT,

* y y x (4.4)
RX s Y s ss

where subscript s denotes the partial derivative. By Figure 4.2

19
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Figure 4.1. Element of Beam
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Figure 4.2. Coordinate System
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+ + x cos - y sin 8_-

-TIO + x sin 0 + y cos 0 (4.5)

Consequently,

1
1 = Xs Yss - Ys Xs =s s TI -n Ts Css 4.6)

1

Accordingly, I is invariant under a coordinate transformation as should be

expected.

By Equation (21) of DPFT, the tangential and normal components of the

acceleration of the center of mass of the projectile are

at = se+ s Stt + ns Stt

*2
an = 5 (ýs C ss + ( s Itt - 7s tt + 2;t•S )st - Is &st

(4.7)

Substituting Equation (4.5) into Equation ,4.7) we get, after rather

laborious algebraic reductions,

at s + 0 (Xs cos 6 - Ys sin 0) + 00(x sin e + ys CosO)

+ (Xs xtt + YS Ytt) + 26(xt Ys - xs Yt) + 6(xys - YXs)

-0 (xx5 + yy S) (4.8)

an = •0Os sin e + Y cos 0) + 00 (xs cos 0- Ys sin e)

+ (x s Ytt s xt) + 20(xs xt + Ys Yt + 0 2 (xys - yxs)

21
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* .2
+ (x + YY + 2s[Xs Y - Ys S + O(x + y2

+ ; (xs ss - s Xss (4.9)

Equations (4.8) and (4.9) give the tangential and normal comnonents of the

absolute acceleration of the projectile. The acceleration of the cross

section of the barrel at the point where the nrojectile lies is obtained by

setting s = s = 0 in Equations (4.8) and (4.9), since the cross section does

not move with respect to the tube. Accordingly, regarding s and t as

independent variables, we obtain the acceleration of any point on the axis

of the tube from Equations (4.8) and (4.9).

The distributed inertial load transverse to the tube is q = -man, where

m(x) is the mass of the tube per unit length. The mass distribution of gas

in the tube at a particular instant may be included in m. Equations (4.3),

(4.4) and (4.9) yield

;-2, JEI(x yss - ys xss) N(xs YSS - yS xss)

- mýO(xs sin e + y cos 8) + miOVXs cos 0 - Y sin e)

+ m(Xs Ytt YS x tt) + 2mb(x 5 xt + YsYt)

+ mO2 (xy - yxs) + m6(xxs + yys) = 0 (4.10)

A term representing the gravitational load should be appended to Equation

(4.10).

For correlation with the work of Parks and Pagan, we set 8 = 0, j0 = 0,

and ý0 = -aB, Also, because of inextensionality of the center line,

xt z- VB xtt z -a where VB and aB are the axial velocity and acceleration

of the barrel due to recoil. The tension N results from acceleration of the

part of the barrel beyond section x. Consequently,

22
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N = aB mdx (4.11)

Also, the approximation s = x is used. Accordingly, Equation (4.10) is

approximated by

a2  (92 2(Ely x) aB Yxx J mdx + m ytt + 2maB Yx + 2 m6 (Yx Yt - VB)

+ mn2 (x y - y) + m6(x + yy) = 0 (4.12)

It is not possible to compare Equation (4.12) with Equation (2.1) of

Reference 26 in detail, since the notations in the report require elaboration

and clarification. However, there appear to be some discrepancies. The

term a 2y/ax at in the exoression for F1 is puzzling. In Equation (4.9), it

occurs only in the expression with the factor s, and this expression drops out
22of the load term q. Likewise the derivative D y/3x seemingly should not

occur in the expression for F1. On the other hand, there should be a term

with factor 62, unless it is considered negligible. Equation (4.12) indicates

that zhe term maB YX in Equation (2.1) of Reference 26 should be multiplied by

2. The differences between Equation (2.1) of Reference 26 and Equation (4.12)

raise the suspicion that all is not right. It might be suspected that

discrepancies occur because rotary inertia and shear deformation are not

included in Equation (4.12), but Parks and Pagan state that they use the

Euler-Bernoulli theory of beams. If PROGRAM FLEX is to be used, a thorough

scrutiny of its mathematical basis is advisable, in view of the questions

raised above.

23
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SECTION 5

ANALYSIS OF TrtE lATERAL MOTION OF AN UNBALANCED
PROJECTILE IN A RIGID CUN TUBE

(Farrell J. Perdreauville, Reference 13)

The report is essentially a presentation of the Euler theory of

dynamics of a rigid body in a Galilean reference frame. The Euler equations

for the moments (Equation 1 of Reference 13) are stated in a general form

that applies when the body-centered coordinates (x, y, z) do not necessarily

coincide with vrincipal axes of inertia of the projectile. For gun dynamics,

the freedom to choose the axes (x, y, z) arbitrarily has some advantages.

However, the moment ff that acts on the projectile ordinarily is determined

with respect to gun-based coordinates, so a transformation to the body-

centered coordinates of the projectile is needed in any case. This trans-

formation is given by Equation (11) of Reference 13. It is to be noted that

these equations specify M I My, M as functions of the Euler angles (G, A, 0)
x y z

and the time t, provided that the moments MX) My, Hz about the gun-based axes

are known functions of t.

The Euler angles (G, A, 8) are not exactly the conventional ones. To

correlate them with the usual Euler angles (0, ¢, i), the following change of

notations is required:

A 1 - G - 0 0 --
2 2 T

Equation (4)'expresses the angular velocity components (w x", w Iz) in

terms of the Euler angles and their time derivatives. Since these equations

are purely kinematical, they are valid for arbitrary orthogonal axes (1, 2, 3).

By means of Equation (4) of Reference 13, wx' wy, uz are eliminated, and

coupled second-order, nonlinear differential equations are obtained. They

theoretically determine (G, A, 0) as functions of t, if the moments (Mx, My,

MZ) and the initial conditions are given. Reference is made to another report

(SC-RR-710071) for the functions (Mx, My, MZ). In the case of a balloting

projectile, continuity of these functions is questionable, since the vector H

derives partly from impacting of the projectile on the wall of the tube. If

G, A, 0 are known functions of t, Equations (1) and (4) of Reference 13

determine M , My M z. rhese results apply for a rigid immovable gun. The
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theory provides only the moments on the projectile; it does not provide the

forces.

The Euler angles (0, €, i), regarded as generalized coordinates, have a

singularity at the pole, 0 = 0, since the longitude 4 is indeterminate at that

point. From a computational standpoint, equations involving the Euler angles

are poorly conditioned if the colatitude 0 is small. Therefore, the Euler

angles are unsuitable coordinates for studying small oscillations in a

neighborhood of the polar axis. This circumstance may cause trouble if the

present theory is programmed for a computer.
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SECTION 6

ANALYSIS OF TIlE LATERAL MOTION OF AN UNBALANCED
PROJECTILE IN AN ELASTIC GUN TUBE

(Farrell J. Perdreauville, Reference 14)

The report is dividcd into three Darts. The first part treats the

motion of a rigid nrojectile that is subjected to prescribed forces and

moments. This theory is based on Newton',. second law and Euler's dynamical

equations for a rigid body. The generalized coordinates are the rectangular

coordinates of the center of mass of the -rojectile and the Euler an-les.

The Euler equations are presented in a general form that applies when the

body-centered coordinates in the projectile do not necessarily coincide with

the principal axes of inertia of the projectile. Since the deflection of the

tube does not enter explicitly into consideration in the first Dart of the

report, the theory in that part is virtually the same as that presented by the

author in his earlier analysis of the motion of a balloting prnjectile in a

rigid gun tube (see Section 5 and Reference 13).

The second part of the report treats the deflection of the tube under

the action of a distributed time-denendent load p(x,t). The analysis is

restricted to the case in which the tube is cantilevered from a rigid

immovable abutment. Also, the tube is taken to be uniform; i.e., there is no

taper. Vertical and sidewise deflections are considered to be uncoupled.

Consequently, only one component of deflection (e.g., the vertical one) need

be considered here.

The deflection is represented in the form,

W = Eýn(x) qn W

in which the functions C(x) are natural modes of a uniform cantilever beam.

The 'differential equation of motion is

ElW + m = p(X t)

Ixxxx tt

Hence,

EIE4'"" X4' = E t x

n n n 4n n n
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in which pn (t) is a coefficient in the expansion of p(x,t) in a scries of

natural modes O . According to the theory of free vibrations of a uniform
4n

beam, ,"" = 4,, where n is an eigenvalue. Consequently,
n n n =

E1+13 p 4'n n(t)

n m m

With the initial conditions, this differential equation determines the

functions qn(t). Accordingly, the deflection W(x,t), corresponding to the

load distribution p(x,t), is formally determined.

The third part of the report is concerned with conditions of consist-

ent displacement of the pro:jectile and the tube. A projectile with a slip

ring is considered. Balloting is contemplated. The bourrelet does not

necessarily touch the bore. The author considers the force on the bourrelet

when contact is established. Motion of th.Ž projectile down the bore is

considered to be specified. The spin moment is computed from the specified

spin acceleration. The general pattern of the compatibility relations for

the projectile and the tube is considered, but some details are omitted. The

author states: "This report indicates the formulation by which forces and

moments are included in the equations of motion. The amount of detail that

is included in balloting analyses will vary, depending on relative magnitudes

of various phenomena and the required accuracy. The analysis should lend

itself to simplification, as well as a building-block sequence of adding

detail as one becomes more familiar with its use."

The force that the projectile exerts on the tube is conceived to be

distributed, since it is represented by p(x,t). Actually, forces of contact

between the projectile nnd the bore are concentrated at the slip ring and

the bourrelet.• This circumstance should cause no trouble, however, since

Dirac d'lta functions, representing the concentrated forces, can be expanded

in series of natural modes of the tube. The Bourdon effect and other effects

of gas pressure in the tube are disregarded.

The practical value of the theory appears to be limited because the

tube is considered to be completely fixed at the breech, and the outside

* diameter of the tube is taken to be a constant. Clamping of the tube at the

breech precludes recoil phenomena. Although the recoil displacement is small
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while the projectile is in the tube, it causes an angular jerk if the center

of mass of the breech is offset from the axis of the tube. Numerical studies

of a simplified system, in which the pro.icetile is represented as a point

mass, have shown that this effect haý. a deleterious influence on accuracy of

firing. (Reference 28)

There are two well-proven ways to reduce the tube and the projectile

to a system with finite degrees of freedom. One way is the method that is

used in the present report; namely, expansion of the deflection of the tube in

a truncated series of natural modes. The other way is the use of finite-

element approximations. The latter method is hetter suited for treating

taper of the barrel, tuning masses, multiple supports, and complicated

boundary conditions at the breech. With either method, the motion can be

analyzed by means of Lagrange's equations. There is some truth in Lagrange's

boast: "The methods that I expound require neither constructions nor

geometrical nor mechanical reasoning, but only algebraic operations, subject

to an exact and invariable procedure." It appears that some of the complex

interactions between the projectile and the tube can be evaded by using the

Lagrangian method. If the forces and moments deriving from contact between

the projectile and the bore are desired, they can be calculated readil by

Newton's laws and Euler's equations after the motion is determined. It

seems inevitable that Dalloting causes serious complications, because

intermittent rubbing of the projectile on the wall of the tube causes

discontinuities in the constraining forces and moments.
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SECTFION 7

DYNAMIC ANALYSIS OF THE 75mm ADMAG GUN SYSTEM
(Martin T. Soifer and Robert S. Becker, Reference 32)

This report represents a lumped-parameter model of the gun system,

consisting of springs and lumped masses. This method has been widely used

for structural analysis, but it has been largely superseded by finite-

element methods employing piecewise polynomial approximations (usually

piecewise cubics).

The gun tube and supporting parts are treated as elastic beams for

"stiffness purposes. Bending, shear, axial and torsional stiffnesses are

included. Nineteen mass points are selected with six Degrees of Freedom

(D.O.F.) at each mass point to produce a 114 D.O.F. system. The representa-

tion of each element as a rigid body with six degrees of freedom is

realistic, provided the mass points are selected appropriately.

Because of the large number of D.O.F. of the model, there are many

coefficients (both stiffnesses and inertias) which must be determined. One

would anticipate considerable difficulty in obtaining realistic values for

them. Detailed instructions for the accurate determination of all these

coefficients are lacking.

It appears that 114 D.O.F. is too large a number to be handled

economically for the full range of numerical integration that is presumably

required to describe a round. One should be able to model the more important

characteristics of the gun motion by a much simnler system containing a

considerably reduced number of D.O.F. In particular, after the most

significant behavior of the gun system has been satisfactorily renresented,

finer tuning of the model may be accomplished later by a more complex model.

The result that calculated natural frequencies of the gun system are

bunched seems suspicious, but it is physically possible. In fact, multiple

roots of the frequency equation can occur. These multiple roots can be

eliminated by small changes in the system (e.g., spring constants or masses).

Then bunching of the frequencies would occur.

The assumption concerning the applied and induced forces and moments

during firing are suspect, particularly, the discarding of moments due to

breech eccentricities and the treating of the projectile as a poi;:t mass.
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The tremendous amount of input data required and the large number of

degrees of freedom employed (with required stiffness and mass data) appear

to render this approach economically (and perhaps, practically) unsound.
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SECTION 8

GUN DYNAMICS STUDIES OF T. E. SIMKINS AND COWORKERS
(Rc-',rences 10, 16, 17, 22; pages 81-146, 373-469, 23, 24; pages 166-177, 27)

A broad range of studies has been undertaken by T. E. Simkins and his

coworkers. In Reference 10 four hundred documents were surveyed, covering

dynamics, vibrations, stre'ss, heat transfer, reliability, and math-modeling.

The objective, as of March 1973, was to establish an up-to-date knowledge of

existing computer models of automatic weapons. Some of the conclusions

reached in March 1973 still are applicable today. For example, on page 62,

a partial summary of Vibrations states "There has been considerable work

done on the mathematical modeling of weapons, however, the actual models are

very particular in nature and it is therefore impossible and perhaps

unreasonable to attempt to apply these models to predict the motion of an as

yet unconstructed system. Many large computer codes have been developed

recently to formulate and solve the ordinary differential equations. The

study has also shown that certain physical phenomena such as material and

structural damping and friction are not completely understood." On pages 84

and 85, the summary and recommendations on the literature on Stress Analysis

included the following remarks: "2. The extent of a desired math model

should be decided on. If only a math model of the barrel is required, a

version of one of the intermediate computer codes altered to include other

desired analyses should suffice. If one wishes to consider weapon

components, also, then a general-type computer code must be developed. If

one desires to have the dynamic loading situation of a pulse traveling down

the barrel (or more realistically., giving this pulse the mass of the

projectile), a general computer code would probably be required even for the

barrel. In addition to stress analysis, heat transfer, etc., the possibil-

ity of including an optimization process for reducing weight, maximizing

firing rate, etc., must be considered.

3. A study should be made on how to present the above work in the

form suitable for use by designers or to decide the level at which it can be

used for design purposes.

The scope of this task was to evaluate math models for automatic

weapons. None were found but there exists a substantial body of work which

can be used in this area and it was this work that was reported on."
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On page 152, the Recommendations section states "In the future we would

recommend that model development proceed only after a phase of thorough

planning. Such planning must include strict definition of the purpose of the

model, i.e. exactly what questions will the model be expected to answer? The

tendency has been, in the past, to ignore inevitable obstacles or impracti-

calities. This tendency must be resisted. Sooner or later the weak links in

a modeling effort must be faced. In some cases the weakness may be in the

area of soils modeling or the modeling of an attached structure - or it may

imply imprecise knowledge of friction or forces of impact. In any cases

these prospects must be faced in the planning stage rather than be hand-waved

aside as they are encountered later on. A preliminary assessment of the

effect of model weaknesses on the service desired of the model must be a part

of the planning process. For example, if a model is expected to predict gun

pointing direction within one-mil accuracy, then unless the weapon is mounted

upon a seismic block, ordinary mounting conditions alone are certain to spoil

the intended predictions." And on page 153, "The previous paragraphs assume

that a complete model of a weapons system is sought. Serious thought should

be given, however, to the possible utility of an incomplete systems model;

i.e. a subsystem model composed only of those portions of a weapons system

which can be represented accurately by deterministic models. Such models may

prove useful for analysis in certain disciplines such as stress and heat-

transfer analysis." A remark is also made to the effect, page 153, that the

organizational success and international acceptance of NASTRAN, a large

finite element code, gives it a lead position among potential candidates for

a basic code from which special adaptions can proceed. Although the present

author agrees with the previously quoted recommendations, he does not endorse

the employment of a large general use computer code, such as NASTRAN, as the

basis for the solution of the rather specialized problem of gun dynamics

(gun pointing accuracy).

Accurate summaries of the results of References 16 and 17 have been

given by A. S. Elder, Reference 22, pages 1-26. As noted by Elder, the

authors of Reference 16 employed NASTRAN as the main computational tool to

calculate transient motion of the M113 gun tube. Included in the study of

Reference 16 were the effects of tube droop, gas pressure and axial inertia

of the barrel, as well as the "Bourdon" effect. The effects of a moving mass

were considered in Reference 17. The effects of the moving mass are
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significant, but not dominating. In Reference 17, the feasibility of handling

problems of projectile/bore interaction via the method of finite elements is

examined. The general procedure is applied to the motion of a uniform elastic

beam with a point mass traveling in it. The beam is divided into several

segments, and each segment is regarded as a short beam. Continuity of

deflections and slopes is imposed. Accordingly, a piecewise cubic approxima-

tion is used.

The principal objective of Reference 17 is to investigate the feasi-

bility of the finite-element method for more complicated gun-tube problems.

The present author believes that the finite-element method can be a useful

tool if the modeling of the system is accurate. For a simple beam, Simkins

obtains very close agreement between the finite-element solution and an

analytical solution by Ayre and Jacobsen (Reference 2 of Simkins' report,

i.e., of Reference 17).

In Reference 22, pages 81-146, Simkins studies the possibility of

parametric resonance in gun tubes. Following an instructive preliminary

discussion of parametric excitation, which is elaborated in treatises on

nonlinear mechanics (e.g., N. Minorski, Introduction to Nonlinear Mechanics,

J. Edwards, Ann Arbor, Mich., 1947), the author concentrates on the motion of

a uniform elastic beam, mounted as shown in Figure 8.1. The problem is

reduced to one of ordinary nonlinear differential equations with independent

variable t by an expansion of the axial displacement U in a cosine series and

an expansion of the lateral deflection v in a series of natural modes of a

iI

Figure 8.1. Uniform Elastic Beam

I;
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cantilever. Coupling between axial and transverse displacements is

incorporated in the equations.

Single-round and multiple-round resonance are studied. NASTRAN is

used. The phrase "single-round resonance" is perhaps misleading. In the case

of a single round, an initial-value problem is encountered. Under certain

conditions, it may have a solution that increases exponentially over a short

period. Multiple rounds, with a suitable period, may cause resonance in the

usual sense. The importance of this phenomenon in gun dynamics problems is

questionable.

In Reference 22, pages 373-469, Simkins again employs the NASTRAN code,

this time to study the radial and transverse response of gun tubes by finite

element methods. Previous work published by the author (e.g., References 16

and 17) is reviewed treating several problems associated with in-bore

ballistics and a limited comparison with experimental work accomplished more

recently is given.

One problem concerns the radial response of a tube bore produced by a

traveling ballistic pressure. Computational results (obtained via NASTRAN)

show good correlation with BRL experimental results obtained for the 175 mm

M113 gun tube, even though the NASTRAN model employed trapezoidal axisymmetric

ring elements, and hence, is restricted to axisymmetric applied loads and

deformations.

The computational model employed an integration time sten small enough

to predict vibration response as high as 20 khz. Unfortunately an inordinate

amount of computer time is required for such time steps, particularly since a

250 degree of freedom model was employed (which the author considered some-

what limited).

A systematic derivation of the governing transverse tube motions is

given, incorporating the most comprehensive up to date load set available

(see also Reference 17). It includes all the effects noted in the discussion

of Reference 17. Coupling between vertical and horizontal motion is not

included, since the projectile is treated as a mass point (see Reference 33).

A comprehensive discussion of the state of the art in moving mass

problems is presented. It includes an example of the response of a uniform,

simply supported beam subjected to a concentrated mass moving along the beam

at a constant velocity under the effects of gravity (see Reference 17). A
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succinct, but clear, discussion of the theoretical differences between the

moving force problem and the moving mass problem is presented.

In Reference 23, the authors emphasize that curvature-induced loads

should be included in any theory of gun tube motion during firing. The work

follows closely that of References 16 and 17 and pages 373-469 of Reference

22. In the first section of Reference 23, the authors observe that contrary

to popular belief dynamic bore expansions during the interior ballistic cycle

create significantly higher tube wall stresses than those on which the tube

design is based, namely those stresses calculated by the classical Lame

formula which is generally viewed as a conservative design criterion (see

Reference 17). In the second part of Reference 23, the authors show that

transient bending vibrations may arise during firing due to tube curvature,

which produce muzzle motions of sufficiently large magnitude to explain a

part of the error at the target. Following the development of Reference 17,

.three sources of tube curvature are derived, namely, that due to recoil

loads, that due to "Bourdon" load, and that due to projectile loads. The

effects of recoil and Bourdon loads are treated in some detail. Highly

detailed tube geometries and interior ballistic curves of pressure and

projectile motion for specific weapons (e.g., the 175 mm M113 gun tube and

th- 105 nun M-68 gun tube) have been included in the analysis, The NASTRAN

k:. is again used, although special programming is required for the

cu ture-induced load functions. The authors conclude that tube curvature

is an important effect in gun-pointing accuracy problems.

In Reference 24, pages 1-66 through 1-77, the results of the second

part o± Reference 23 are again presented for the 105 mm M-68 gun tube.
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SECTION 9

CONCLUSIONS

The works discussed in Sections 2, 4, 7 and 8 appear to form the most

suitable basis for a gun pointing accuracy program. Of these works, the work

of Parks and Pagan (Section 4) appears to have certain technical errors of

omission, and it should be used with caution. The work of Soifer and Becker

appears to have considerable difficulty in economical and technical applica-

tion. This work is a lumped-mass study which has been largely superseded by

the finite-element method. Simkins and his associates have studied a wide

range of effects (Section 8). However, the use of NASTRAN, a general computer

code, is very expensive and for the highly specialized loading functions of

gun dynamics problems requires special programming.

The work of Cox and Hokanson, which is similar in part to earlier work

,done by BLM Applied Mechanics Consultants (Reference 28), appears to have

considerable merit, even though there are wide differences in values

calculated by Cox and Hokanson and values experimentally measured. The

finite-element model of the gun'tube employed by Cox and Hokanson appears to

be a good one. In the opinion of the present author, the concept of a

computer program designed explicitly for the gun dynamics problem is a valid

one, since the gun dynamics problem (loading functions, etc.) is a highly

specialized one, requiring very careful attention to the detailed modeling of

the gun system.
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Please take a Feu. minutes to answer the questions below; tear out
this sheet. fold as indicated, staple or tape closed, and place
in the mail. Your comments will provide us with information for
improviri future reports.

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related
project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information
source, design data or procedure, management procedure, source of
ideas, etc.)

4. Has the information in this report led to any quantitative
savings as far as man-hours/contract dollars saved, operating costs
avoided, efficiencies achieved, etc.? If so, please elaborate.

S. General Comments (Indicate what you think should be changed to
make this report and future reports of this type more responsive
to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared
this report to raise specific questions or discuss the topic,
please fill in the following information.

Name:

Telephone Number:

Organization Address:
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